get-ml-model-bert-large-squad
Automatically generated README for this automation recipe: get-ml-model-bert-large-squad
Category: AI/ML models
License: Apache 2.0
- CM meta description for this script: _cm.json
- Output cached? True
Reuse this script in your project
Install MLCommons CM automation meta-framework
Pull CM repository with this automation recipe (CM script)
cm pull repo mlcommons@cm4mlops
Print CM help from the command line
cmr "get ml-model raw bert bert-large bert-squad language language-processing" --help
Run this script
Run this script via CLI
cm run script --tags=get,ml-model,raw,bert,bert-large,bert-squad,language,language-processing[,variations]
Run this script via CLI (alternative)
cmr "get ml-model raw bert bert-large bert-squad language language-processing [variations]"
Run this script from Python
import cmind
r = cmind.access({'action':'run'
'automation':'script',
'tags':'get,ml-model,raw,bert,bert-large,bert-squad,language,language-processing'
'out':'con',
...
(other input keys for this script)
...
})
if r['return']>0:
print (r['error'])
Run this script via Docker (beta)
cm docker script "get ml-model raw bert bert-large bert-squad language language-processing[variations]"
Variations
-
No group (any combination of variations can be selected)
Click here to expand this section.
_onnxruntime
_tensorflow
-
Group "download-source"
Click here to expand this section.
_amazon-s3
_armi
_custom-url.#
- ENV variables:
- CM_PACKAGE_URL:
#
- CM_PACKAGE_URL:
- ENV variables:
_github
_zenodo
-
Group "framework"
Click here to expand this section.
_deepsparse
- ENV variables:
- CM_ML_MODEL_FRAMEWORK:
deepsparse
- CM_ML_MODEL_INPUT_IDS_NAME:
input_ids
- CM_ML_MODEL_INPUT_MASK_NAME:
input_mask
- CM_ML_MODEL_INPUT_SEGMENTS_NAME:
segment_ids
- CM_ML_MODEL_OUTPUT_END_LOGITS_NAME:
output_end_logits
- CM_ML_MODEL_OUTPUT_START_LOGITS_NAME:
output_start_logits
- CM_ML_MODEL_FRAMEWORK:
- ENV variables:
_onnx
(default)- ENV variables:
- CM_ML_MODEL_FRAMEWORK:
onnx
- CM_ML_MODEL_INPUT_IDS_NAME:
input_ids
- CM_ML_MODEL_INPUT_MASK_NAME:
input_mask
- CM_ML_MODEL_INPUT_SEGMENTS_NAME:
segment_ids
- CM_ML_MODEL_OUTPUT_END_LOGITS_NAME:
output_end_logits
- CM_ML_MODEL_OUTPUT_START_LOGITS_NAME:
output_start_logits
- CM_ML_MODEL_FRAMEWORK:
- ENV variables:
_pytorch
- ENV variables:
- CM_ML_MODEL_FRAMEWORK:
pytorch
- CM_ML_MODEL_INPUT_IDS_NAME:
input_ids
- CM_ML_MODEL_INPUT_MASK_NAME:
input_mask
- CM_ML_MODEL_INPUT_SEGMENTS_NAME:
segment_ids
- CM_ML_MODEL_OUTPUT_END_LOGITS_NAME:
output_end_logits
- CM_ML_MODEL_OUTPUT_START_LOGITS_NAME:
output_start_logits
- CM_ML_MODEL_FRAMEWORK:
- ENV variables:
_tf
- ENV variables:
- CM_ML_MODEL_FRAMEWORK:
tf
- CM_ML_MODEL_INPUT_IDS_NAME:
input_ids
- CM_ML_MODEL_INPUT_MASK_NAME:
input_mask
- CM_ML_MODEL_INPUT_SEGMENTS_NAME:
segment_ids
- CM_ML_MODEL_OUTPUT_END_LOGITS_NAME:
output_end_logits
- CM_ML_MODEL_OUTPUT_START_LOGITS_NAME:
output_start_logits
- CM_ML_MODEL_FRAMEWORK:
- ENV variables:
-
Group "packing"
Click here to expand this section.
_packed
- ENV variables:
- CM_ML_MODEL_BERT_PACKED:
yes
- CM_ML_MODEL_BERT_PACKED:
- ENV variables:
_unpacked
(default)- ENV variables:
- CM_ML_MODEL_BERT_PACKED:
no
- CM_ML_MODEL_BERT_PACKED:
- ENV variables:
-
Group "precision"
Click here to expand this section.
_fp32
(default)- ENV variables:
- CM_ML_MODEL_PRECISION:
fp32
- CM_ML_MODEL_PRECISION:
- ENV variables:
_int8
- ENV variables:
- CM_ML_MODEL_PRECISION:
int8
- CM_ML_MODEL_QUANTIZED:
yes
- CM_ML_MODEL_PRECISION:
- ENV variables:
Default variations
_fp32,_onnx,_unpacked
Native script being run
No run file exists for Windows
Script output
cmr "get ml-model raw bert bert-large bert-squad language language-processing [variations]" -j