Skip to content

get-ml-model-efficientnet-lite

Automatically generated README for this automation recipe: get-ml-model-efficientnet-lite

Category: AI/ML models

License: Apache 2.0

  • CM meta description for this script: _cm.json
  • Output cached? True

Reuse this script in your project

Install MLCommons CM automation meta-framework

Pull CM repository with this automation recipe (CM script)

cm pull repo mlcommons@cm4mlops

cmr "get ml-model efficientnet raw ml-model-efficientnet ml-model-efficientnet-lite lite tflite image-classification" --help

Run this script

Run this script via CLI
cm run script --tags=get,ml-model,efficientnet,raw,ml-model-efficientnet,ml-model-efficientnet-lite,lite,tflite,image-classification[,variations] 
Run this script via CLI (alternative)
cmr "get ml-model efficientnet raw ml-model-efficientnet ml-model-efficientnet-lite lite tflite image-classification [variations]" 
Run this script from Python
import cmind

r = cmind.access({'action':'run'
              'automation':'script',
              'tags':'get,ml-model,efficientnet,raw,ml-model-efficientnet,ml-model-efficientnet-lite,lite,tflite,image-classification'
              'out':'con',
              ...
              (other input keys for this script)
              ...
             })

if r['return']>0:
    print (r['error'])
Run this script via Docker (beta)
cm docker script "get ml-model efficientnet raw ml-model-efficientnet ml-model-efficientnet-lite lite tflite image-classification[variations]" 

Variations

  • No group (any combination of variations can be selected)

    Click here to expand this section.

    • _tflite
  • Group "kind"

    Click here to expand this section.

    • _lite0 (default)
      • ENV variables:
        • CM_ML_MODEL_EFFICIENTNET_LITE_KIND: lite0
    • _lite1
      • ENV variables:
        • CM_ML_MODEL_EFFICIENTNET_LITE_KIND: lite1
    • _lite2
      • ENV variables:
        • CM_ML_MODEL_EFFICIENTNET_LITE_KIND: lite2
    • _lite3
      • ENV variables:
        • CM_ML_MODEL_EFFICIENTNET_LITE_KIND: lite3
    • _lite4
      • ENV variables:
        • CM_ML_MODEL_EFFICIENTNET_LITE_KIND: lite4
  • Group "precision"

    Click here to expand this section.

    • _fp32 (default)
      • ENV variables:
        • CM_ML_MODEL_EFFICIENTNET_LITE_PRECISION: fp32
        • CM_ML_MODEL_INPUTS_DATA_TYPE: fp32
        • CM_ML_MODEL_PRECISION: fp32
        • CM_ML_MODEL_WEIGHTS_DATA_TYPE: fp32
    • _uint8
      • Aliases: _int8
      • ENV variables:
        • CM_ML_MODEL_EFFICIENTNET_LITE_PRECISION: int8
        • CM_ML_MODEL_INPUTS_DATA_TYPE: uint8
        • CM_ML_MODEL_PRECISION: uint8
        • CM_ML_MODEL_WEIGHTS_DATA_TYPE: uint8
  • Group "resolution"

    Click here to expand this section.

    • _resolution-224 (default)
      • ENV variables:
        • CM_ML_MODEL_IMAGE_HEIGHT: 224
        • CM_ML_MODEL_IMAGE_WIDTH: 224
        • CM_ML_MODEL_MOBILENET_RESOLUTION: 224
        • CM_DATASET_PREPROCESSED_IMAGENET_DEP_TAGS: _resolution.224
    • _resolution-240
      • ENV variables:
        • CM_ML_MODEL_IMAGE_HEIGHT: 240
        • CM_ML_MODEL_IMAGE_WIDTH: 240
        • CM_ML_MODEL_MOBILENET_RESOLUTION: 240
        • CM_DATASET_PREPROCESSED_IMAGENET_DEP_TAGS: _resolution.240
    • _resolution-260
      • ENV variables:
        • CM_ML_MODEL_IMAGE_HEIGHT: 260
        • CM_ML_MODEL_IMAGE_WIDTH: 260
        • CM_ML_MODEL_MOBILENET_RESOLUTION: 260
        • CM_DATASET_PREPROCESSED_IMAGENET_DEP_TAGS: _resolution.260
    • _resolution-280
      • ENV variables:
        • CM_ML_MODEL_IMAGE_HEIGHT: 280
        • CM_ML_MODEL_IMAGE_WIDTH: 280
        • CM_ML_MODEL_MOBILENET_RESOLUTION: 280
        • CM_DATASET_PREPROCESSED_IMAGENET_DEP_TAGS: _resolution.280
    • _resolution-300
      • ENV variables:
        • CM_ML_MODEL_IMAGE_HEIGHT: 300
        • CM_ML_MODEL_IMAGE_WIDTH: 300
        • CM_ML_MODEL_MOBILENET_RESOLUTION: 300
        • CM_DATASET_PREPROCESSED_IMAGENET_DEP_TAGS: _resolution.300
Default variations

_fp32,_lite0,_resolution-224

Default environment

These keys can be updated via --env.KEY=VALUE or env dictionary in @input.json or using script flags.

  • CM_ML_MODEL_INPUTS_DATA_TYPE: fp32
  • CM_ML_MODEL_PRECISION: fp32
  • CM_ML_MODEL_WEIGHTS_DATA_TYPE: fp32

Script output

cmr "get ml-model efficientnet raw ml-model-efficientnet ml-model-efficientnet-lite lite tflite image-classification [variations]"  -j