Skip to content

get-ml-model-resnet50

Automatically generated README for this automation recipe: get-ml-model-resnet50

Category: AI/ML models

License: Apache 2.0

  • Notes from the authors, contributors and users: README-extra

  • CM meta description for this script: _cm.json

  • Output cached? True

Reuse this script in your project

Install MLCommons CM automation meta-framework

Pull CM repository with this automation recipe (CM script)

cm pull repo mlcommons@cm4mlops

cmr "get raw ml-model resnet50 ml-model-resnet50 image-classification" --help

Run this script

Run this script via CLI
cm run script --tags=get,raw,ml-model,resnet50,ml-model-resnet50,image-classification[,variations] 
Run this script via CLI (alternative)
cmr "get raw ml-model resnet50 ml-model-resnet50 image-classification [variations]" 
Run this script from Python
import cmind

r = cmind.access({'action':'run'
              'automation':'script',
              'tags':'get,raw,ml-model,resnet50,ml-model-resnet50,image-classification'
              'out':'con',
              ...
              (other input keys for this script)
              ...
             })

if r['return']>0:
    print (r['error'])
Run this script via Docker (beta)
cm docker script "get raw ml-model resnet50 ml-model-resnet50 image-classification[variations]" 

Variations

  • No group (any combination of variations can be selected)

    Click here to expand this section.

    • _batch_size.#
      • ENV variables:
        • CM_ML_MODEL_BATCH_SIZE: #
    • _batch_size.1
      • ENV variables:
        • CM_ML_MODEL_BATCH_SIZE: 1
    • _fix-input-shape
    • _from-tf
    • _huggingface_default
      • ENV variables:
        • CM_PACKAGE_URL: https://huggingface.co/ctuning/mlperf-inference-resnet50-onnx-fp32-imagenet2012-v1.0/resolve/main/resnet50_v1.onnx
  • Group "framework"

    Click here to expand this section.

    • _ncnn
      • ENV variables:
        • CM_ML_MODEL_FRAMEWORK: ncnn
    • _onnx (default)
      • Aliases: _onnxruntime
      • ENV variables:
        • CM_ML_MODEL_DATA_LAYOUT: NCHW
        • CM_ML_MODEL_FRAMEWORK: onnx
        • CM_ML_MODEL_INPUT_LAYERS: input_tensor:0
        • CM_ML_MODEL_INPUT_LAYER_NAME: input_tensor:0
        • CM_ML_MODEL_INPUT_SHAPES: \"input_tensor:0\": (BATCH_SIZE, 3, 224, 224)
        • CM_ML_MODEL_OUTPUT_LAYERS: softmax_tensor:0
        • CM_ML_MODEL_OUTPUT_LAYER_NAME: softmax_tensor:0
        • CM_ML_MODEL_STARTING_WEIGHTS_FILENAME: <<<CM_PACKAGE_URL>>>
        • CM_ML_MODEL_VER: 1.5
    • _pytorch
      • ENV variables:
        • CM_ML_MODEL_DATA_LAYOUT: NCHW
        • CM_ML_MODEL_FRAMEWORK: pytorch
        • CM_ML_MODEL_GIVEN_CHANNEL_MEANS: ?
        • CM_ML_MODEL_INPUT_LAYER_NAME: input_tensor:0
        • CM_ML_MODEL_INPUT_SHAPES: \"input_tensor:0\": [BATCH_SIZE, 3, 224, 224]
        • CM_ML_MODEL_OUTPUT_LAYERS: output
        • CM_ML_MODEL_OUTPUT_LAYER_NAME: ?
        • CM_ML_STARTING_WEIGHTS_FILENAME: <<<CM_PACKAGE_URL>>>
    • _tensorflow
      • Aliases: _tf
      • ENV variables:
        • CM_ML_MODEL_ACCURACY: 76.456
        • CM_ML_MODEL_DATA_LAYOUT: NHWC
        • CM_ML_MODEL_FRAMEWORK: tensorflow
        • CM_ML_MODEL_GIVEN_CHANNEL_MEANS: 123.68 116.78 103.94
        • CM_ML_MODEL_INPUT_LAYERS: input_tensor
        • CM_ML_MODEL_INPUT_LAYER_NAME: input_tensor
        • CM_ML_MODEL_INPUT_SHAPES: \"input_tensor:0\": (BATCH_SIZE, 3, 224, 224)
        • CM_ML_MODEL_NORMALIZE_DATA: 0
        • CM_ML_MODEL_OUTPUT_LAYERS: softmax_tensor
        • CM_ML_MODEL_OUTPUT_LAYER_NAME: softmax_tensor
        • CM_ML_MODEL_STARTING_WEIGHTS_FILENAME: <<<CM_PACKAGE_URL>>>
        • CM_ML_MODEL_SUBTRACT_MEANS: YES
        • CM_PACKAGE_URL: https://zenodo.org/record/2535873/files/resnet50_v1.pb
    • _tflite
      • ENV variables:
        • CM_ML_MODEL_ACCURACY: 76.456
        • CM_ML_MODEL_DATA_LAYOUT: NHWC
        • CM_ML_MODEL_FRAMEWORK: tflite
        • CM_ML_MODEL_GIVEN_CHANNEL_MEANS: 123.68 116.78 103.94
        • CM_ML_MODEL_INPUT_LAYERS: input_tensor
        • CM_ML_MODEL_INPUT_LAYER_NAME: input_tensor
        • CM_ML_MODEL_INPUT_SHAPES: \"input_tensor 2\": (BATCH_SIZE, 224, 224, 3)
        • CM_ML_MODEL_NORMALIZE_DATA: 0
        • CM_ML_MODEL_OUTPUT_LAYERS: softmax_tensor
        • CM_ML_MODEL_OUTPUT_LAYER_NAME: softmax_tensor
        • CM_ML_MODEL_STARTING_WEIGHTS_FILENAME: <<<CM_PACKAGE_URL>>>
        • CM_ML_MODEL_SUBTRACT_MEANS: YES
  • Group "model-output"

    Click here to expand this section.

    • _argmax (default)
      • ENV variables:
        • CM_ML_MODEL_OUTPUT_LAYER_ARGMAX: yes
    • _no-argmax
      • ENV variables:
        • CM_ML_MODEL_OUTPUT_LAYER_ARGMAX: no
  • Group "opset-version"

    Click here to expand this section.

    • _opset-11
      • ENV variables:
        • CM_ML_MODEL_ONNX_OPSET: 11
    • _opset-8
      • ENV variables:
        • CM_ML_MODEL_ONNX_OPSET: 8
  • Group "precision"

    Click here to expand this section.

    • _fp32 (default)
      • ENV variables:
        • CM_ML_MODEL_INPUT_DATA_TYPES: fp32
        • CM_ML_MODEL_PRECISION: fp32
        • CM_ML_MODEL_WEIGHT_DATA_TYPES: fp32
    • _int8
      • ENV variables:
        • CM_ML_MODEL_INPUT_DATA_TYPES: int8
        • CM_ML_MODEL_PRECISION: int8
        • CM_ML_MODEL_WEIGHT_DATA_TYPES: int8
    • _uint8
      • ENV variables:
        • CM_ML_MODEL_INPUT_DATA_TYPES: uint8
        • CM_ML_MODEL_PRECISION: uint8
        • CM_ML_MODEL_WEIGHT_DATA_TYPES: uint8
Default variations

_argmax,_fp32,_onnx

Native script being run

No run file exists for Windows


Script output

cmr "get raw ml-model resnet50 ml-model-resnet50 image-classification [variations]"  -j