get-ml-model-tiny-resnet
Automatically generated README for this automation recipe: get-ml-model-tiny-resnet
Category: AI/ML models
License: Apache 2.0
- CM meta description for this script: _cm.json
- Output cached? True
Reuse this script in your project
Install MLCommons CM automation meta-framework
Pull CM repository with this automation recipe (CM script)
cm pull repo mlcommons@cm4mlops
Print CM help from the command line
cmr "get raw ml-model resnet pretrained tiny model ic ml-model-tiny-resnet image-classification" --help
Run this script
Run this script via CLI
cm run script --tags=get,raw,ml-model,resnet,pretrained,tiny,model,ic,ml-model-tiny-resnet,image-classification[,variations]
Run this script via CLI (alternative)
cmr "get raw ml-model resnet pretrained tiny model ic ml-model-tiny-resnet image-classification [variations]"
Run this script from Python
import cmind
r = cmind.access({'action':'run'
'automation':'script',
'tags':'get,raw,ml-model,resnet,pretrained,tiny,model,ic,ml-model-tiny-resnet,image-classification'
'out':'con',
...
(other input keys for this script)
...
})
if r['return']>0:
print (r['error'])
Run this script via Docker (beta)
cm docker script "get raw ml-model resnet pretrained tiny model ic ml-model-tiny-resnet image-classification[variations]"
Variations
-
No group (any combination of variations can be selected)
Click here to expand this section.
_batch_size.#
- ENV variables:
- CM_ML_MODEL_BATCH_SIZE:
#
- CM_ML_MODEL_BATCH_SIZE:
- ENV variables:
-
Group "framework"
Click here to expand this section.
_onnx
- ENV variables:
- CM_TMP_ML_MODEL_TF2ONNX:
yes
- CM_TMP_ML_MODEL_TF2ONNX:
- ENV variables:
_tflite
(default)- ENV variables:
- CM_ML_MODEL_ACCURACY:
85
- CM_ML_MODEL_DATA_LAYOUT:
NHWC
- CM_ML_MODEL_FRAMEWORK:
tflite
- CM_ML_MODEL_GIVEN_CHANNEL_MEANS: ``
- CM_ML_MODEL_INPUT_LAYERS: ``
- CM_ML_MODEL_INPUT_LAYER_NAME: ``
- CM_ML_MODEL_INPUT_SHAPES: ``
- CM_ML_MODEL_NORMALIZE_DATA:
0
- CM_ML_MODEL_OUTPUT_LAYERS: ``
- CM_ML_MODEL_OUTPUT_LAYER_NAME: ``
- CM_ML_MODEL_STARTING_WEIGHTS_FILENAME:
<<<CM_PACKAGE_URL>>>
- CM_ML_MODEL_SUBTRACT_MEANS:
YES
- CM_ML_MODEL_ACCURACY:
- ENV variables:
-
Group "precision"
Click here to expand this section.
_fp32
- ENV variables:
- CM_ML_MODEL_INPUT_DATA_TYPES:
fp32
- CM_ML_MODEL_PRECISION:
fp32
- CM_ML_MODEL_WEIGHT_DATA_TYPES:
fp32
- CM_ML_MODEL_INPUT_DATA_TYPES:
- ENV variables:
_int8
(default)- ENV variables:
- CM_ML_MODEL_INPUT_DATA_TYPES:
int8
- CM_ML_MODEL_PRECISION:
int8
- CM_ML_MODEL_WEIGHT_DATA_TYPES:
int8
- CM_ML_MODEL_INPUT_DATA_TYPES:
- ENV variables:
_uint8
- ENV variables:
- CM_ML_MODEL_INPUT_DATA_TYPES:
uint8
- CM_ML_MODEL_PRECISION:
uint8
- CM_ML_MODEL_WEIGHT_DATA_TYPES:
uint8
- CM_ML_MODEL_INPUT_DATA_TYPES:
- ENV variables:
Default variations
_int8,_tflite
Native script being run
No run file exists for Windows
Script output
cmr "get raw ml-model resnet pretrained tiny model ic ml-model-tiny-resnet image-classification [variations]" -j