run-mlperf-training-submission-checker
Automatically generated README for this automation recipe: run-mlperf-training-submission-checker
Category: MLPerf benchmark support
License: Apache 2.0
- CM meta description for this script: _cm.json
- Output cached? False
Reuse this script in your project
Install MLCommons CM automation meta-framework
Pull CM repository with this automation recipe (CM script)
cm pull repo mlcommons@cm4mlops
Print CM help from the command line
cmr "run mlc mlcommons mlperf training train mlperf-training submission checker submission-checker mlc-submission-checker" --help
Run this script
Run this script via CLI
cm run script --tags=run,mlc,mlcommons,mlperf,training,train,mlperf-training,submission,checker,submission-checker,mlc-submission-checker[,variations] [--input_flags]
Run this script via CLI (alternative)
cmr "run mlc mlcommons mlperf training train mlperf-training submission checker submission-checker mlc-submission-checker [variations]" [--input_flags]
Run this script from Python
import cmind
r = cmind.access({'action':'run'
'automation':'script',
'tags':'run,mlc,mlcommons,mlperf,training,train,mlperf-training,submission,checker,submission-checker,mlc-submission-checker'
'out':'con',
...
(other input keys for this script)
...
})
if r['return']>0:
print (r['error'])
Run this script via Docker (beta)
cm docker script "run mlc mlcommons mlperf training train mlperf-training submission checker submission-checker mlc-submission-checker[variations]" [--input_flags]
Variations
-
No group (any combination of variations can be selected)
Click here to expand this section.
_short-run
- ENV variables:
- CM_MLPERF_SHORT_RUN:
yes
- CM_MLPERF_SHORT_RUN:
- ENV variables:
Script flags mapped to environment
--extra_args=value
→CM_MLPERF_SUBMISSION_CHECKER_EXTRA_ARGS=value
--input=value
→CM_MLPERF_SUBMISSION_DIR=value
--power=value
→CM_MLPERF_POWER=value
--push_to_github=value
→CM_MLPERF_RESULT_PUSH_TO_GITHUB=value
--skip_compliance=value
→CM_MLPERF_SKIP_COMPLIANCE=value
--skip_power_check=value
→CM_MLPERF_SKIP_POWER_CHECK=value
--src_version=value
→CM_MLPERF_SUBMISSION_CHECKER_VERSION=value
--submission_dir=value
→CM_MLPERF_SUBMISSION_DIR=value
--submitter=value
→CM_MLPERF_SUBMITTER=value
--tar=value
→CM_TAR_SUBMISSION_DIR=value
Default environment
These keys can be updated via --env.KEY=VALUE
or env
dictionary in @input.json
or using script flags.
- CM_MLPERF_SHORT_RUN:
no
Versions
Default version: master
master
r3.0
r3.1
Native script being run
No run file exists for Windows
Script output
cmr "run mlc mlcommons mlperf training train mlperf-training submission checker submission-checker mlc-submission-checker [variations]" [--input_flags] -j