app-image-classification-onnx-py
Automatically generated README for this automation recipe: app-image-classification-onnx-py
Category: Modular AI/ML application pipeline
License: Apache 2.0
-
Notes from the authors, contributors and users: README-extra
-
CM meta description for this script: _cm.yaml
- Output cached? False
Reuse this script in your project
Install MLCommons CM automation meta-framework
Pull CM repository with this automation recipe (CM script)
cm pull repo mlcommons@cm4mlops
Print CM help from the command line
cmr "modular python app image-classification onnx" --help
Run this script
Run this script via CLI
cm run script --tags=modular,python,app,image-classification,onnx[,variations] [--input_flags]
Run this script via CLI (alternative)
cmr "modular python app image-classification onnx [variations]" [--input_flags]
Run this script from Python
import cmind
r = cmind.access({'action':'run'
'automation':'script',
'tags':'modular,python,app,image-classification,onnx'
'out':'con',
...
(other input keys for this script)
...
})
if r['return']>0:
print (r['error'])
Run this script via Docker (beta)
cm docker script "modular python app image-classification onnx[variations]" [--input_flags]
Variations
-
Group "target"
Click here to expand this section.
_cpu
(default)- ENV variables:
- USE_CPU:
True
- USE_CPU:
- ENV variables:
_cuda
- ENV variables:
- USE_CUDA:
True
- USE_CUDA:
- ENV variables:
Default variations
_cpu
Input Flags
- --input: Path to JPEG image to classify
- --output: Output directory (optional)
- --j: Print JSON output
Script flags mapped to environment
--input=value
→CM_IMAGE=value
--output=value
→CM_APP_IMAGE_CLASSIFICATION_ONNX_PY_OUTPUT=value
Default environment
These keys can be updated via --env.KEY=VALUE
or env
dictionary in @input.json
or using script flags.
- CM_BATCH_COUNT:
1
- CM_BATCH_SIZE:
1
Native script being run
Script output
cmr "modular python app image-classification onnx [variations]" [--input_flags] -j