app-mlperf-inference-intel
Automatically generated README for this automation recipe: app-mlperf-inference-intel
Category: Modular MLPerf benchmarks
License: Apache 2.0
- CM meta description for this script: _cm.yaml
- Output cached? False
Reuse this script in your project
Install MLCommons CM automation meta-framework
Pull CM repository with this automation recipe (CM script)
cm pull repo mlcommons@cm4mlops
Print CM help from the command line
cmr "reproduce mlcommons mlperf inference harness intel-harness intel intel-harness intel" --help
Run this script
Run this script via CLI
cm run script --tags=reproduce,mlcommons,mlperf,inference,harness,intel-harness,intel,intel-harness,intel[,variations] [--input_flags]
Run this script via CLI (alternative)
cmr "reproduce mlcommons mlperf inference harness intel-harness intel intel-harness intel [variations]" [--input_flags]
Run this script from Python
import cmind
r = cmind.access({'action':'run'
'automation':'script',
'tags':'reproduce,mlcommons,mlperf,inference,harness,intel-harness,intel,intel-harness,intel'
'out':'con',
...
(other input keys for this script)
...
})
if r['return']>0:
print (r['error'])
Run this script via Docker (beta)
cm docker script "reproduce mlcommons mlperf inference harness intel-harness intel intel-harness intel[variations]" [--input_flags]
Variations
-
No group (any combination of variations can be selected)
Click here to expand this section.
_bs.#- ENV variables:
- ML_MLPERF_MODEL_BATCH_SIZE:
#
- ML_MLPERF_MODEL_BATCH_SIZE:
- ENV variables:
_v3.1- ENV variables:
- CM_MLPERF_INFERENCE_CODE_VERSION:
v3.1
- CM_MLPERF_INFERENCE_CODE_VERSION:
- ENV variables:
-
Group "device"
Click here to expand this section.
_cpu(default)- ENV variables:
- CM_MLPERF_DEVICE:
cpu
- CM_MLPERF_DEVICE:
- ENV variables:
-
Group "framework"
Click here to expand this section.
_pytorch(default)- ENV variables:
- CM_MLPERF_BACKEND:
pytorch - CM_MLPERF_BACKEND_LIB_NAMESPEC:
pytorch
- CM_MLPERF_BACKEND:
- ENV variables:
-
Group "loadgen-batchsize"
Click here to expand this section.
_batch_size.#- ENV variables:
- CM_MLPERF_LOADGEN_BATCH_SIZE:
#
- CM_MLPERF_LOADGEN_BATCH_SIZE:
- ENV variables:
-
Group "loadgen-scenario"
Click here to expand this section.
_multistream- ENV variables:
- CM_MLPERF_LOADGEN_SCENARIO:
MultiStream
- CM_MLPERF_LOADGEN_SCENARIO:
- ENV variables:
_offline- ENV variables:
- CM_MLPERF_LOADGEN_SCENARIO:
Offline
- CM_MLPERF_LOADGEN_SCENARIO:
- ENV variables:
_server- ENV variables:
- CM_MLPERF_LOADGEN_SCENARIO:
Server
- CM_MLPERF_LOADGEN_SCENARIO:
- ENV variables:
_singlestream- ENV variables:
- CM_MLPERF_LOADGEN_SCENARIO:
SingleStream
- CM_MLPERF_LOADGEN_SCENARIO:
- ENV variables:
-
Group "model"
Click here to expand this section.
_bert-99- ENV variables:
- CM_MODEL:
bert-99 - CM_SQUAD_ACCURACY_DTYPE:
float32 - CM_NOT_ML_MODEL_STARTING_WEIGHTS_FILENAME:
https://zenodo.org/record/3750364/files/bert_large_v1_1_fake_quant.onnx
- CM_MODEL:
- ENV variables:
_bert-99.9- ENV variables:
- CM_MODEL:
bert-99.9 - CM_NOT_ML_MODEL_STARTING_WEIGHTS_FILENAME:
https://zenodo.org/record/3733910/files/model.onnx
- CM_MODEL:
- ENV variables:
_gptj-99- ENV variables:
- CM_MODEL:
gptj-99 - CM_NOT_ML_MODEL_STARTING_WEIGHTS_FILENAME:
https://zenodo.org/record/3733910/files/model.onnx - CM_ML_MODEL_WEIGHTS_DATA_TYPE:
int8 - CM_ML_MODEL_INPUTS_DATA_TYPE:
int8
- CM_MODEL:
- ENV variables:
_gptj-99.9- ENV variables:
- CM_MODEL:
gptj-99.9 - CM_NOT_ML_MODEL_STARTING_WEIGHTS_FILENAME:
https://zenodo.org/record/3733910/files/model.onnx
- CM_MODEL:
- ENV variables:
_resnet50(default)- ENV variables:
- CM_MODEL:
resnet50 - dataset_imagenet_preprocessed_input_square_side:
224 - ml_model_has_background_class:
YES - ml_model_image_height:
224 - loadgen_buffer_size:
1024 - loadgen_dataset_size:
50000 - CM_BENCHMARK:
STANDALONE_CLASSIFICATION
- CM_MODEL:
- ENV variables:
_retinanet- ENV variables:
- CM_MODEL:
retinanet - CM_ML_MODEL_STARTING_WEIGHTS_FILENAME:
https://zenodo.org/record/6617981/files/resnext50_32x4d_fpn.pth - dataset_imagenet_preprocessed_input_square_side:
224 - ml_model_image_height:
800 - ml_model_image_width:
800 - loadgen_buffer_size:
64 - loadgen_dataset_size:
24576 - CM_BENCHMARK:
STANDALONE_OBJECT_DETECTION
- CM_MODEL:
- ENV variables:
-
Group "network-mode"
Click here to expand this section.
_network-server- ENV variables:
- CM_MLPERF_NETWORK_RUN_MODE:
network-server
- CM_MLPERF_NETWORK_RUN_MODE:
- ENV variables:
_standalone(default)- ENV variables:
- CM_MLPERF_NETWORK_RUN_MODE:
standalone
- CM_MLPERF_NETWORK_RUN_MODE:
- ENV variables:
-
Group "network-run-mode"
Click here to expand this section.
_network-client- ENV variables:
- CM_MLPERF_NETWORK_RUN_MODE:
network-client
- CM_MLPERF_NETWORK_RUN_MODE:
- ENV variables:
-
Group "power-mode"
Click here to expand this section.
_maxn- ENV variables:
- CM_MLPERF_NVIDIA_HARNESS_MAXN:
True
- CM_MLPERF_NVIDIA_HARNESS_MAXN:
- ENV variables:
_maxq- ENV variables:
- CM_MLPERF_NVIDIA_HARNESS_MAXQ:
True
- CM_MLPERF_NVIDIA_HARNESS_MAXQ:
- ENV variables:
-
Group "precision"
Click here to expand this section.
_fp32- ENV variables:
- CM_IMAGENET_ACCURACY_DTYPE:
float32
- CM_IMAGENET_ACCURACY_DTYPE:
- ENV variables:
_int4_uint8
-
Group "run-mode"
Click here to expand this section.
_build-harness- ENV variables:
- CM_LOCAL_MLPERF_INFERENCE_INTEL_RUN_MODE:
build_harness
- CM_LOCAL_MLPERF_INFERENCE_INTEL_RUN_MODE:
- ENV variables:
_calibration- ENV variables:
- CM_LOCAL_MLPERF_INFERENCE_INTEL_RUN_MODE:
calibration
- CM_LOCAL_MLPERF_INFERENCE_INTEL_RUN_MODE:
- ENV variables:
_run-harness(default)- ENV variables:
- CM_LOCAL_MLPERF_INFERENCE_INTEL_RUN_MODE:
run_harness
- CM_LOCAL_MLPERF_INFERENCE_INTEL_RUN_MODE:
- ENV variables:
-
Group "sut"
Click here to expand this section.
_sapphire-rapids.112c- ENV variables:
- WARMUP:
--warmup
- WARMUP:
- ENV variables:
_sapphire-rapids.24c
-
Group "version"
Click here to expand this section.
_v4.0(default)- ENV variables:
- CM_MLPERF_INFERENCE_CODE_VERSION:
v4.0
- CM_MLPERF_INFERENCE_CODE_VERSION:
- ENV variables:
Default variations
_cpu,_pytorch,_resnet50,_run-harness,_standalone,_v4.0
Script flags mapped to environment
--count=value→CM_MLPERF_LOADGEN_QUERY_COUNT=value--max_batchsize=value→CM_MLPERF_LOADGEN_MAX_BATCHSIZE=value--mlperf_conf=value→CM_MLPERF_CONF=value--mode=value→CM_MLPERF_LOADGEN_MODE=value--multistream_target_latency=value→CM_MLPERF_LOADGEN_MULTISTREAM_TARGET_LATENCY=value--offline_target_qps=value→CM_MLPERF_LOADGEN_OFFLINE_TARGET_QPS=value--output_dir=value→CM_MLPERF_OUTPUT_DIR=value--performance_sample_count=value→CM_MLPERF_LOADGEN_PERFORMANCE_SAMPLE_COUNT=value--rerun=value→CM_RERUN=value--scenario=value→CM_MLPERF_LOADGEN_SCENARIO=value--server_target_qps=value→CM_MLPERF_LOADGEN_SERVER_TARGET_QPS=value--singlestream_target_latency=value→CM_MLPERF_LOADGEN_SINGLESTREAM_TARGET_LATENCY=value--skip_preprocess=value→CM_SKIP_PREPROCESS_DATASET=value--skip_preprocessing=value→CM_SKIP_PREPROCESS_DATASET=value--target_latency=value→CM_MLPERF_LOADGEN_TARGET_LATENCY=value--target_qps=value→CM_MLPERF_LOADGEN_TARGET_QPS=value--user_conf=value→CM_MLPERF_USER_CONF=value
Default environment
These keys can be updated via --env.KEY=VALUE or env dictionary in @input.json or using script flags.
- CM_BATCH_COUNT:
1 - CM_BATCH_SIZE:
1 - CM_FAST_COMPILATION:
yes - CM_MLPERF_LOADGEN_SCENARIO:
Offline - CM_MLPERF_LOADGEN_MODE:
performance - CM_SKIP_PREPROCESS_DATASET:
no - CM_SKIP_MODEL_DOWNLOAD:
no - CM_MLPERF_SUT_NAME_IMPLEMENTATION_PREFIX:
intel - CM_MLPERF_SKIP_RUN:
no - verbosity:
1 - loadgen_trigger_cold_run:
0
Native script being run
No run file exists for Windows
Script output
cmr "reproduce mlcommons mlperf inference harness intel-harness intel intel-harness intel [variations]" [--input_flags] -j