app-loadgen-generic-python
Automatically generated README for this automation recipe: app-loadgen-generic-python
Category: Modular MLPerf inference benchmark pipeline
License: Apache 2.0
Developers: Gaz Iqbal, Arjun Suresh, Grigori Fursin * Notes from the authors, contributors and users: README-extra
- CM meta description for this script: _cm.yaml
- Output cached? False
Reuse this script in your project
Install MLCommons CM automation meta-framework
Pull CM repository with this automation recipe (CM script)
cm pull repo mlcommons@cm4mlops
Print CM help from the command line
cmr "python app generic loadgen" --help
Run this script
Run this script via CLI
cm run script --tags=python,app,generic,loadgen[,variations] [--input_flags]
Run this script via CLI (alternative)
cmr "python app generic loadgen [variations]" [--input_flags]
Run this script from Python
import cmind
r = cmind.access({'action':'run'
'automation':'script',
'tags':'python,app,generic,loadgen'
'out':'con',
...
(other input keys for this script)
...
})
if r['return']>0:
print (r['error'])
Run this script via Docker (beta)
cm docker script "python app generic loadgen[variations]" [--input_flags]
Variations
-
No group (any combination of variations can be selected)
Click here to expand this section.
_cmc
- ENV variables:
- CM_CUSTOM_MODEL_CMC:
True
- CM_CUSTOM_MODEL_CMC:
- ENV variables:
_huggingface
- ENV variables:
- CM_CUSTOM_MODEL_SOURCE:
huggingface
- CM_CUSTOM_MODEL_SOURCE:
- ENV variables:
_model-stub.#
- ENV variables:
- CM_ML_MODEL_STUB:
#
- CM_ML_MODEL_STUB:
- ENV variables:
-
Group "backend"
Click here to expand this section.
_onnxruntime
(default)- ENV variables:
- CM_MLPERF_BACKEND:
onnxruntime
- CM_MLPERF_BACKEND:
- ENV variables:
_pytorch
- ENV variables:
- CM_MLPERF_BACKEND:
pytorch
- CM_MLPERF_BACKEND:
- ENV variables:
-
Group "device"
Click here to expand this section.
_cpu
(default)- ENV variables:
- CM_MLPERF_DEVICE:
cpu
- CM_MLPERF_EXECUTION_PROVIDER:
CPUExecutionProvider
- CM_MLPERF_DEVICE:
- ENV variables:
_cuda
- ENV variables:
- CM_MLPERF_DEVICE:
gpu
- CM_MLPERF_EXECUTION_PROVIDER:
CUDAExecutionProvider
- CM_MLPERF_DEVICE:
- ENV variables:
-
Group "models"
Click here to expand this section.
_custom
- ENV variables:
- CM_MODEL:
custom
- CM_MODEL:
- ENV variables:
_resnet50
- ENV variables:
- CM_MODEL:
resnet50
- CM_MODEL:
- ENV variables:
_retinanet
- ENV variables:
- CM_MODEL:
retinanet
- CM_MODEL:
- ENV variables:
Default variations
_cpu,_onnxruntime
Input Flags
- --modelpath: Full path to file with model weights
- --modelcodepath: (for PyTorch models) Full path to file with model code and cmc.py
- --modelcfgpath: (for PyTorch models) Full path to JSON file with model cfg
- --modelsamplepath: (for PyTorch models) Full path to file with model sample in pickle format
- --ep: ONNX Execution provider
- --scenario: MLPerf LoadGen scenario
- --samples: Number of samples (2)
- --runner: MLPerf runner
- --execmode: MLPerf exec mode
- --output_dir: MLPerf output directory
- --concurrency: MLPerf concurrency
- --intraop: MLPerf intra op threads
- --interop: MLPerf inter op threads
Script flags mapped to environment
--concurrency=value
→CM_MLPERF_CONCURRENCY=value
--ep=value
→CM_MLPERF_EXECUTION_PROVIDER=value
--execmode=value
→CM_MLPERF_EXEC_MODE=value
--interop=value
→CM_MLPERF_INTEROP=value
--intraop=value
→CM_MLPERF_INTRAOP=value
--loadgen_duration_sec=value
→CM_MLPERF_LOADGEN_DURATION_SEC=value
--loadgen_expected_qps=value
→CM_MLPERF_LOADGEN_EXPECTED_QPS=value
--modelcfg=value
→CM_ML_MODEL_CFG=value
--modelcfgpath=value
→CM_ML_MODEL_CFG_WITH_PATH=value
--modelcodepath=value
→CM_ML_MODEL_CODE_WITH_PATH=value
--modelpath=value
→CM_ML_MODEL_FILE_WITH_PATH=value
--modelsamplepath=value
→CM_ML_MODEL_SAMPLE_WITH_PATH=value
--output_dir=value
→CM_MLPERF_OUTPUT_DIR=value
--runner=value
→CM_MLPERF_RUNNER=value
--samples=value
→CM_MLPERF_LOADGEN_SAMPLES=value
--scenario=value
→CM_MLPERF_LOADGEN_SCENARIO=value
Default environment
These keys can be updated via --env.KEY=VALUE
or env
dictionary in @input.json
or using script flags.
- CM_MLPERF_EXECUTION_MODE:
parallel
- CM_MLPERF_BACKEND:
onnxruntime
Native script being run
Script output
cmr "python app generic loadgen [variations]" [--input_flags] -j