app-mlperf-training-nvidia
Automatically generated README for this automation recipe: app-mlperf-training-nvidia
Category: Modular MLPerf training benchmark pipeline
License: Apache 2.0
- CM meta description for this script: _cm.yaml
- Output cached? False
Reuse this script in your project
Install MLCommons CM automation meta-framework
Pull CM repository with this automation recipe (CM script)
cm pull repo mlcommons@cm4mlops
Print CM help from the command line
cmr "app vision language mlcommons mlperf training nvidia" --help
Run this script
Run this script via CLI
cm run script --tags=app,vision,language,mlcommons,mlperf,training,nvidia[,variations] [--input_flags]
Run this script via CLI (alternative)
cmr "app vision language mlcommons mlperf training nvidia [variations]" [--input_flags]
Run this script from Python
import cmind
r = cmind.access({'action':'run'
'automation':'script',
'tags':'app,vision,language,mlcommons,mlperf,training,nvidia'
'out':'con',
...
(other input keys for this script)
...
})
if r['return']>0:
print (r['error'])
Run this script via Docker (beta)
cm docker script "app vision language mlcommons mlperf training nvidia[variations]" [--input_flags]
Variations
-
No group (any combination of variations can be selected)
Click here to expand this section.
_bert
- ENV variables:
- CM_MLPERF_MODEL:
bert
- CM_MLPERF_MODEL:
- ENV variables:
-
Group "device"
Click here to expand this section.
_cuda
(default)- ENV variables:
- CM_MLPERF_DEVICE:
cuda
- USE_CUDA:
True
- CM_MLPERF_DEVICE:
- ENV variables:
_tpu
- ENV variables:
- CM_MLPERF_DEVICE:
tpu
- CUDA_VISIBLE_DEVICES: ``
- USE_CUDA:
False
- CM_MLPERF_DEVICE:
- ENV variables:
-
Group "framework"
Click here to expand this section.
_pytorch
- ENV variables:
- CM_MLPERF_BACKEND:
pytorch
- CM_MLPERF_BACKEND_VERSION:
<<<CM_TORCH_VERSION>>>
- CM_MLPERF_BACKEND:
- ENV variables:
_tf
- Aliases:
_tensorflow
- ENV variables:
- CM_MLPERF_BACKEND:
tf
- CM_MLPERF_BACKEND_VERSION:
<<<CM_TENSORFLOW_VERSION>>>
- CM_MLPERF_BACKEND:
- Aliases:
Default variations
_cuda
Script flags mapped to environment
--clean=value
→CM_MLPERF_CLEAN_SUBMISSION_DIR=value
--docker=value
→CM_RUN_DOCKER_CONTAINER=value
--hw_name=value
→CM_HW_NAME=value
--model=value
→CM_MLPERF_CUSTOM_MODEL_PATH=value
--num_threads=value
→CM_NUM_THREADS=value
--output_dir=value
→OUTPUT_BASE_DIR=value
--rerun=value
→CM_RERUN=value
Default environment
These keys can be updated via --env.KEY=VALUE
or env
dictionary in @input.json
or using script flags.
- CM_MLPERF_SUT_NAME_IMPLEMENTATION_PREFIX:
nvidia
Native script being run
No run file exists for Windows
Script output
cmr "app vision language mlcommons mlperf training nvidia [variations]" [--input_flags] -j