app-mlperf-training-reference
Automatically generated README for this automation recipe: app-mlperf-training-reference
Category: Modular MLPerf training benchmark pipeline
License: Apache 2.0
- CM meta description for this script: _cm.yaml
- Output cached? False
Reuse this script in your project
Install MLCommons CM automation meta-framework
Pull CM repository with this automation recipe (CM script)
cm pull repo mlcommons@cm4mlops
Print CM help from the command line
cmr "app vision language mlcommons mlperf training reference ref" --help
Run this script
Run this script via CLI
cm run script --tags=app,vision,language,mlcommons,mlperf,training,reference,ref[,variations] [--input_flags]
Run this script via CLI (alternative)
cmr "app vision language mlcommons mlperf training reference ref [variations]" [--input_flags]
Run this script from Python
import cmind
r = cmind.access({'action':'run'
'automation':'script',
'tags':'app,vision,language,mlcommons,mlperf,training,reference,ref'
'out':'con',
...
(other input keys for this script)
...
})
if r['return']>0:
print (r['error'])
Run this script via Docker (beta)
cm docker script "app vision language mlcommons mlperf training reference ref[variations]" [--input_flags]
Variations
-
No group (any combination of variations can be selected)
Click here to expand this section.
_bert- ENV variables:
- CM_MLPERF_MODEL:
bert
- CM_MLPERF_MODEL:
- ENV variables:
-
Group "device"
Click here to expand this section.
_cuda(default)- ENV variables:
- CM_MLPERF_DEVICE:
cuda - USE_CUDA:
True
- CM_MLPERF_DEVICE:
- ENV variables:
_tpu- ENV variables:
- CM_MLPERF_DEVICE:
tpu - CUDA_VISIBLE_DEVICES: ``
- USE_CUDA:
False
- CM_MLPERF_DEVICE:
- ENV variables:
-
Group "framework"
Click here to expand this section.
_pytorch- ENV variables:
- CM_MLPERF_BACKEND:
pytorch - CM_MLPERF_BACKEND_VERSION:
<<<CM_TORCH_VERSION>>>
- CM_MLPERF_BACKEND:
- ENV variables:
_tf- Aliases:
_tensorflow - ENV variables:
- CM_MLPERF_BACKEND:
tf - CM_MLPERF_BACKEND_VERSION:
<<<CM_TENSORFLOW_VERSION>>>
- CM_MLPERF_BACKEND:
- Aliases:
Default variations
_cuda
Script flags mapped to environment
--clean=value→CM_MLPERF_CLEAN_SUBMISSION_DIR=value--docker=value→CM_RUN_DOCKER_CONTAINER=value--hw_name=value→CM_HW_NAME=value--model=value→CM_MLPERF_CUSTOM_MODEL_PATH=value--num_threads=value→CM_NUM_THREADS=value--output_dir=value→OUTPUT_BASE_DIR=value--rerun=value→CM_RERUN=value
Default environment
These keys can be updated via --env.KEY=VALUE or env dictionary in @input.json or using script flags.
- CM_MLPERF_SUT_NAME_IMPLEMENTATION_PREFIX:
reference - CM_MLPERF_SUT_NAME_RUN_CONFIG_SUFFIX: ``
Native script being run
No run file exists for Windows
Script output
cmr "app vision language mlcommons mlperf training reference ref [variations]" [--input_flags] -j