Skip to content

Graph Neural Network using R-GAT

Dataset

The benchmark implementation run command will automatically download the validation and calibration datasets and do the necessary preprocessing. In case you want to download only the datasets, you can use the below commands.

R-GAT validation run uses the IGBH dataset consisting of 547,306,935 nodes and 5,812,005,639 edges.

Get Full Dataset

cm run script --tags=get,dataset,igbh,_full -j

R-GAT debug run uses the IGBH debug dataset(tiny).

Get Full Dataset

cm run script --tags=get,dataset,igbh,_debug -j

Model

The benchmark implementation run command will automatically download the required model and do the necessary conversions. In case you want to only download the official model, you can use the below commands.

Get the Official MLPerf R-GAT Model

PyTorch

cm run script --tags=get,ml-model,rgat -j