3D Unet¶
The benchmark reference for 3D Unet can be found in this link, and here is the PR for the minified benchmark implementation: link.
Project setup¶
An important requirement is that you must have Docker installed.
# Create Python environment and install MLCube Docker runner
virtualenv -p python3 ./env && source ./env/bin/activate && pip install pip==24.0 && pip install mlcube-docker
# Fetch the implementation from GitHub
git clone https://github.com/mlcommons/training && cd ./training
git fetch origin pull/695/head:feature/mlcube_3d_unet && git checkout feature/mlcube_3d_unet
cd ./image_segmentation/pytorch/mlcube
Inside the mlcube directory run the following command to check implemented tasks.
mlcube describe
MLCube tasks¶
Download dataset.
mlcube run --task=download_data -Pdocker.build_strategy=always
Process dataset.
mlcube run --task=process_data -Pdocker.build_strategy=always
Train SSD.
mlcube run --task=train -Pdocker.build_strategy=always
Execute the complete pipeline¶
You can execute the complete pipeline with one single command.
mlcube run --task=download_data,process_data,train -Pdocker.build_strategy=always
Run a quick demo¶
You can run a quick demo that first downloads a tiny dataset and then executes a short training workload.
mlcube run --task=download_demo,demo -Pdocker.build_strategy=always