Skip to content

MLPerf Automotive Benchmarks

Overview

The currently valid MLPerf Automotive Benchmarks as of MLPerf inference v5.0 round are listed below, categorized by tasks. Under each model you can find its details like the dataset used, reference accuracy, server latency constraints etc.


2D Object Detection

SSD-ResNet50

  • Dataset: Cognata
    • Dataset Size: TBD
    • QSL Size: 128 (default, minimum needed)
  • Number of Parameters: TBD
  • FLOPs: TBD
  • Reference Model Accuracy: 0.7179 mAP
  • Latency Target: 99.9%
  • Accuracy Constraint: 99.9%
  • Framework Support: ONNX, PyTorch
  • Submission Category: ADAS

Camera-Based 3D Object Detection

BEVFormer (tiny)

  • Dataset: NuScenes
    • Dataset Size: TBD
    • QSL Size: 1024 (default), 512 (minimum needed)
  • Number of Parameters: TBD
  • FLOPs: TBD
  • Reference Model Accuracy: 0.2683556 mAP / 0.37884288 NDS
  • Latency Target: 99.9%
  • Accuracy Constraint: 99%
  • Framework Support: ONNX, PyTorch
  • Submission Category: ADAS

Semantic Segmentation

DeepLabv3+

  • Dataset: Cognata
    • Dataset Size: TBD
    • QSL Size: 128 (default, minimum needed)
  • Number of Parameters: TBD
  • FLOPs: TBD
  • Reference Model Accuracy: 0.924355 mIOU
  • Resolution: 8MP
  • Latency Target: 99.9%
  • Accuracy Constraint: 99.9%
  • Framework Support: ONNX (8MP & Dynamic), PyTorch
  • Submission Category: ADAS

Submission Categories

  • ADAS Category: All benchmarks are applicable to the ADAS category for the automotive inference v0.5

High Accuracy Variants

  • Benchmarks: All the benchmarks for submission round v0.5 have high accuracy variant.
  • Requirement: Must achieve at least 99.9% of the reference model accuracy.