Skip to content

2D Object Detection using SSD-ResNet50

Dataset

The benchmark implementation run command will automatically download the validation and calibration datasets and do the necessary preprocessing. In case you want to download only the datasets, you can use the below commands.

SSD validation run uses the Cognata dataset. The preprocessed data is located in mlc_cognata_dataset/preprocess_2d folder.

Get Validation Dataset

mlcr get,preprocessed,dataset,cognata,_mlc,_2d_obj_det,_validation --outdirname=<path_to_download>

Get Calibration Dataset

mlcr get,preprocessed,dataset,cognata,_mlc,_2d_obj_det,_calibration --outdirname=<path_to_download>

For preprocessing the dataset yourself, you can download the raw dataset.

Get Raw Dataset

mlcr get,raw,dataset,cognata,_mlc,_rclone --outdirname=<path_to_download>

Model

The benchmark implementation run command will automatically download the required model and do the necessary conversions. In case you want to only download the official model, you can use the below commands.

Get the Official MLPerf SSD Model

ONNX

mlcr get,ml-model,ssd,resnet50,_mlc,_rclone,_onnx --outdirname=<path_to_download>

PyTorch

mlcr get,ml-model,ssd,resnet50,_mlc,_rclone,_pytorch --outdirname=<path_to_download>